Bill Budge’s
3-D GRAPHICS SYSTEM
and

GAME TOOL

soft fware

—————— C . U.._'\

.ﬂ;r

A credit notice is requlred for use of thl‘ﬁn
software to create programs for resale.:‘_,__:j,..,=;e_z

Bill Budge and Callfornla pacific Computer Co.
intend that this program be used by programmers to.create
games and simulations. ~ Should anyone wish to market or
sell product created with the use of this program permissicn
is hereby given providing that a credit notice is promin-
ently placed on the packaging, on the documentation, and on
a text screen in such a manner that users of the program
shall, in normal operation of the program, see said credit
notice. Credit notice shall read: "3-D effects and ani-
mation created with the use of Bill Budge's 3-D Graphics
.System & Game Tool, copyright 1980, California Pacific
Computer Co.". o

Prohibition: Use of this program, or any part thereof, in
a graphics software package or program for
sale or resale is expressly prohibited.

COPYRIGHT 1980, CALIFORNIA PACIFIC COMPUTER CC. All
rights reserved. No part of this publication may be
reproduced, stored in a retrieval system, or trans-
mitted, in any form or by any means, electronic
mechanical, photocopying, recording, or otherwise,
without the prior written permission of California
Pacific Computer Co.

Printed in the United States of America

INTRODUCTION TO_ BILL BUDGE'S APPLE II GAME TOOL

The Apple II Game Tool is an interactive three—-dimensional graphics
system that has been specialized to produce displays for video games. With
it, any programmer can add 2-D or 3-D animations to his or her programs to
create games and simulations that are as good as anything now being sold for
the Apple II. How is this possible?

First, the Game Tool contains 3-D drawing software that is fast.
In order to achieve the illusion of smooth motion, an animation should run at
10 frames per second or faster. The Game Tool graphics software can go
that fast even when drawing fairly large objects, and small animations have
been clocked at over 40 frames per second. To round out the package,
special utilities are provided to draw missiles and characters on the screen.

Second, the Game Tool includes interfaces to Integer and Applesoft
Basics that are clean and easy to use. This means that Apple users who
don't know assembly language can use the graphics software almost as effect-
ively as assembly Llanguage programmers can. The speed measurements quoted
above were made using Integer Basic driver programs.

The capabilities of the Game Tool will make it useful to advanced
and even professional programmers., What is really exciting, however, is that
you don't have to be an expert to use it. Now even novice programmers can
create impressive animated graphics. Never before has a 3-D graphics pack-
age been optimized specifically for game graphics and then made available to
such a wide range of users. The results should be interesting.

JURNING ON THE GAME TOOL

The Game Tool will run on any Apple II computer with 48K of RAM.
Just boot the disk to get started. If all is well, this menu-will appear on
the screen: e

243)

ENTER COMMAND:

E — EDIT A GRAPHICS DATA BASE
M — BUILD A GAME NCDULE
D — RUN THE DEMO PROGRAM

If you want to see what the graphics software can do, type 'D' to
run the Demo included on the disk. This is a binary program that shows off
the 3-D drawing subroutines. It was created with the Game Tool. To stop
it, just hit a key on the Apple keyboard.

The best way to get started with the Game Tool is to actually use
it to build a game. To help you, the following tutorial is provided. This
will give you a good idea of what ths system is and what it does. Following
the tutorial is a more detailed reference section which should be read
whenever questions about specific parts of the system arise.

A TUTORIAL INTRODUCTION TO THE APPLE II GAME TOOL

It is assumed that the reader is already familiar with at least one
of the Apple II Basic languages (Integer or Applesoft]). Though an uninitiated
user can create and view shapes using the Game Tool, this software is
intended as & development tool for programmers. This tutorial begins by
showing how to create a version of the classic "Lunar Lander" video game.
This game was chosen becasuse it requires only simple 2-D graphics, which
makes the discussion as simple and uncluttered as possible. However, you
will see that the Game Tool is very effective even when restricted to two
dimensions, Most video games use only 2-D animation. Even when the third
dimension is required, it can often be faked with a 2-D software package.
Since the Game Tool has true 3-D capability, however, the tutorial ends with
a simple 3-D example: a real-time simulation of complex rotations of the
Space Shuttls Enterprise.

The first step in creating our Lunar Lander game is to form de-
scriptions of the graphics objects we want drawn. These descriptions must
be in a form that the drawing programs understand; together the descriptions
are called the graphics data base. An editor is provided as part of the
system to make this step easier. :

The next step is to put the newly created data base together with
the 3-D graphics software to get a binary module that will support our
application program. This module will do all the hi-res graphics for us,
Making the module is trivial.

The last step is to program the dynamics of ™"lunar Llanding" in
Integer Basic, Applesoft, or assembly language. This program is rather small
because it doesrn't have to do any graphics; about all it does is maintain a
few variables describing the lander's velocity and position. The module does
the rest. ’

These three steps are necessary for any application of the Game
Tool, and several iterations may be necessary before the gams or simulation
is done. This is the model for using the system:

Step 1: Using the editor, create or modify a graphics data bass.

Step 2: Build a module by adding graphics software,

Step 3: Write the application program,

(If more or different objects are needed, go back to Step 1.)

Let's create the graphics data base for Lunar Lander., We will need
two objects: a Llanding vehicle (LEM), and a cross section of the Lunar
surface to serve as a background. A sketch is a good first step in defining
these objects.

Figure 1

The LEM object will move around on the screen depending on how
much thrust the game playsr applies {using a game button]. To make the
game interesting, it will be necessary to control the LEM's approach angle
with the gsme paddle (to draw the 'tilted' LEM we will use just one of the
three rotations that the 3-D package can perform). The Llunar cross section
will serve as a hackground. Once it is drawn, it will not move or rotate or
change size, though these are interesting and possible alternatives.

As it now stands, the system cannot accept information in sketch
form. Instead, we must break the sketch down into its component pieces, and
enter those pieces via the keyboard. This process is more tedious that
entering the data base with a graphics tablet or a Llight pen, but it has the
advantage that it will work with any Apple computer system. There are
three kinds of pieces that we need to consider: (1) gbjects, like the LEM and
the lunar surfacs, (2) Llines, and (3} points. Breaking the drawing of Figure
1 into objects, points and lines is easy; the result [with each part numbered
for identification] is shown in Figure 2.

:.-gf——-'. -{-‘.23-‘) LEM Po;n{'s and lines O
@
€
0 n
| w1} 25
8
h’ﬁ '.9 i
149 & A £l
; e
3 P \{ o (?/
1) 29 g0
@
20 2|

Lunar Landscape P"’."f" and lines O
' Figurs 2

All that we have to do now is form a description of each object,
peint and Llins.
An _object is described by giving the range of points and
lines that it contains, ie., Object 4 contains points 20
through 40, and lines 25 through S50.

A_line is described by giving its two endpoints, ie., Line
4 connects points 8 and 9,

A point is described by specifying its position in Car-
tesian Coordinates, ie. Point 78 has coordinates -10,10.
(If you are unfemiliar with coordinate systems, see Appen—
dix A.}

Figure 3 shows the LEM and lunar surface objects with superimposed
coordinate axes and with the coordinates for each point written in. Note
that each object has its own set of axes, which can be positioned in many

different ways. In the case of the LEM, the axes meet at its center of
gravity. Since the 3-D package always rotates around the origin, this in-
sures that the LEM will rotate in a convincing way. The completed data base
for Lunar Lander is given in Table 1.

-y bl
a
R XY Rt
e
e .Y e R
__\4 i : re -
PO R Yk 4 K % 7
A a0 %o X- o
e X_agu
~g,~10 htd [d A
. .
-k
- yodiaie
. * ¢,
~1§,13 90,20 11,-11 I'o'ﬂb
. 2}
- ALY «‘h.
het
LT o
“H2, % P -%,56
20ts oLl
, ¥ ! S
]
o i
. 432 12,32 120,32
» 431 [4 »
»
-g¥le -3,
L] L] rik
18
1250 -2
a7 -o¥ “32 ¥ -6 -~ i e 28 32 .‘., :';1\'
L
Figure 3

Object
Object

Point
Point
Point
Point
Point
Point
Point
Point
Point
Point
Point
Point
Point
Point
Point
Point

Point
Point
Point
Point
Point
Point
Point
Point
Point
Point
Point
Point
Point
Point
Point
Point

-0

QoOoONOGA_AEWND O

-— el =) 3
GO0

16

18
18
20
21
22
23
24
25
26
27
28
28
30
31

contains points 0-15, Llines 0-13.

contains points 16-31, Llines 14-28.

is at -4, 14 Line O connects points 0 and 1
is at 4, 14 Line 1 connects points 1 and 2
is at 8, 10 Line 2 connects points 2 and 3
is at 8, 2 Line 3 connects points 3 and 4
is at 4, O Line 4 connects points 5§ and 6
isat -4, O Line & connects points 6 and 7
is at -8, 2 Line 6 connects points 7 and O
is at -8, 10 Line 7 connects points 8 and 9
isat -8, O Line 8 connects points B and 10
is at -18,-18 Line B8 connects points 10 and 11
is at -8,-10 Line 10 connects points 11 and 12
is at 8,-10 Line 11 connects paints 12 and 13
is at 8, 0 Line 12 connects points 8 and 12
is at 18,-18 Line 13 connects points 14 and 15
is at 0, O

is at - @,-20

is at =127, O Line 14 connects points 16 and 17
is at =112, 60 Line 15 connects points 17 and 18
is at -100, 44 Line 16 connects points 18 and 189
is at -86, S6 Line 17 connects points 19 and 20
is at -64, 16 Line 18 connects points 20 and 21
is at -32, 16 Line 19 connects points 21 and 22
is at -20, 48 Line 20 connects points 22 and 23
is at -4, 32 Line 21 connects points 23 and 24
is at 12, 68 Line 22 connects points 24 and 25
is at 24, 80 Line 23 connects points 25 and 26
is at 40, 60 Line 24 connects points 26 and 27
is at 48, 40 Line 25 connects points 27 and 28
is at 68, 48 Line 268 connects points 28 and 29
is at 82, 32 Line 27 connects points 29 and 30
is at 120, 32 Line 28 connects points 30 and 31

is at 127, 4B

Table 1 (Lunar Lander Data Base)

This description is a lot (ike a connect—the—dots puzzle. It is

in a very convenient form as far as the 3-D drawing software is concerned.
Coding this description can be a nuisance for large objects, but for games in
general, this phase of development takes only an hour or two. To summarize,
the graphics data base went through the following stages:

Stage 1: A drawing or mental image of the graphics for the
application.

Stage 2: The same representation, divided into objects, points and
lines.

Stage 3: A textual description of each object, point and Lline.

The data base we crested can now be entered into the Apple. It
would be a lot of trouble to load this data into the Apple's memory by hand,
and so an editor is provided. It makes entering and changing shapes much
easier, and provides an easy way to examine shapes and transfer them to and
from a disk. If you have booted the Game Tool disk, you can now type E' to
run the editor.

One of the first things you will notice is that the editor uses the
top Llines of the screen to display its status. Whenever it expects a
prompt, it will list the current commands or modes which can be selected;
whenever you issue an illegal or impossible command, it will tell you so.
Another convention is that the <esc> key will always get you out of
whatever command you are executing, if it is the first character in an input
line.

Type 'P to see an error message. No command begins with a B!,
Now type 'A' to append, followed by <esc>, which gets you back to the top
command level. What we want to do is create a brand new data base, so we
will append objects, points and lines to the editor's empty memory. Type 'AP'
to get into append-point mode. The editor will prompt you for point 0
(printing '0:') and then accept the input Lline you type to describe paint O.
Because this is a 3-D system, it will expect the point to have three
coordinates, so follow the X and Y cocardinates for each point with a zero
(and end each line with a <cr>). Enter Lunar Lander's 32 points as follows:
(the numbers come from Table 1)

:—4,14,0
:4,14,0

0
1

31:127,48,0

Type <esc> to break out of this seemingly infinite loop. Remember
that the <esc> has to be the first character you type in an input Lline. You
should still be in append mode;. type 'L' to append lines. Enter all the lines
in the data base just like you appended the points:

0:0,1
1:1,2

28:30,31

Type <esc> when the editor prompts you for line 28. Then type '0! to append
the objects to the data base:

0:0,15,0,13
1:16,31,14,28

Type <esc> <esc> to get back to the top command Llevel of the
editor. To Llist the data base, type 'L'. This command requires a range, so
it gives you a prompt:

RANGE: "™X" "X,Y" <cr> <esc>

You can list one point and one line by typing a single number "X",
or you can list a range of points and lines by typing the range "X,Y". To
list everything just hit <cr>, and to escape - you guessed it, <ssc>. List
the whole data base now to make sure you entered everything correctly; use
the spacebar to keep the text from flying past; the space bar allows you to
list line by line.

Before going any further, we should see what our shapes look Llike.
Ordinarily, this is a very important step, as this is the easiest way to make
sure that the data base is as we want it; in this contrived example thaough,
the shapes were correct before you typed them in. Get into the show mode
(type 'S') and position the objects on the screen (type 'P'). This is import~
ant, because we want the lunar surface at the bottom of the screen, and we
don't want either object to be going off an edge of the screen. The fast
graphics software does no "clipping" of Llines that extend off screen, and the
resulting effects aren't usually what we want. The position mode prompts
you for the number of the object which you are positioning. Type gt
following by <cr>. The screen should now show the Llunar lander somewhere.
Use the game paddles to move it around; notice what happens when part of it
hits a screen boundary. This is something to be avoided.

Position the LEM near the center of the screen. Type <esc>, then
position object 1, the lunar surface. Put it down near the bottom of the
screen — it has to be precisely centered, or you will get unwanted effects.
Type <esc> to get to show mode again. This time, type 'T' to perform 3-D
transforms on the LEM. In this mode, paddles 0 and 1 control the two kinds
of rotation that don't make sense in 2-D worlds. Play with the paddles but
then leave them at their zero points (all the way counterclockwisel. The
rotation we are interested in is controlled by the 'Z' key (Z for rotation
around the Z-axis). Hit this key repeatedly to rotate the LEM. Hit the
cursor keys to change the scale. If you set the paddles correctly, and
entered the shape description with no mistakes, the LEM should look just Llike
it did in the drawing in Figure 1. (If you made a mistake, use the 'change’
command., See also the editor technical section.)

Type <esc> <esc> to get out of the show mode. Try Llisting the
data base. It is unchanged, even though you probably left the LEM in a
rotated or scaled state. The 3-D transformations never change the actual
data base.

That's enough editing for now. Save this data base using the disk
write command (type 'W'). Replace the Game Tool system diskette with one of
your own initialized diskettes, and for the filename prompt type LUNAR
LANDER. This completes the definition of the graphics for our game, until
we wish to add more objects, or change the ones we just entered.

Put the Game Tool disk back in the drive and quit the editor by
typing <esc> and then 'Y' to verify that you want to quit.

PUTTING_THE PIECES TOGETHER: BUILDING A MODULE

When you quit the editor, the executive prompts you for your next
command. We want to build a module, so type 'M'. The program now loads one
of two drawing methods a module can use. The simplest method is 'OR!
drawing. The other method, however, called 'XOR' (exclusive-or} drawing has
the nice property that it does not wipe out any background designs on the
screen. Lunar Lander requires a moonscape in the background sc our choice
is XOR-drawing. If we used OR drawing, we would have to refresh the
background each frame, because the LEM might have been drawn over it. This
would slow down the animation.

Include the XOR~-drawing version of the drawing software by typing
X'

The next choice regards the interface. Since there are differences
in the way arrays are implemented in Integer Basic, Applesoft and assembly
language, the interface programs for these languages are not the same. Type
T' if you are using Integer Basic, 'F' if you are using Applesoft. Assembly
language programmers should pick their favorite Basic.

Leave out hi-res text and missiles for now (type 'N' to both
prompts].

Finally, add our data base, by typing LUNAR LANDER for the shape
and inserting your data base diskette. For the module name, type LUNAR
LANDER again. Save the module on the same disk that the shapes are on,
That's all there is to building a module.

10

WRITING_THE GAME PROGRAM

Before we write the Lunar Lander program, Llet's play with the
module., The first thing to do is type in a Basic "header". Remave the
Game Tool diskette and boot up a normal Basic diskette. A header is just a
series of statements which help you to interface with the graphics module.
When you write your game program in Basic, you must add it to these header
statsments if it is to communicate correctly with a module. There is a
header for Integer Basic and one for Applesoft. If you are going to use
Applesoft for your programs, skip the rest of this section, and read the
next one entitled "Writing the Game Program in Applesoft".

Here is the Integer Basic header program:

POKE 74,0:POKE 75,96:POKE 204,0:POKE 205,96

DIM CODE(15),X[(15),Y(15),SCALE(15]) ,XROT(15),YROT(15]),
ZROT(15) ,SCRNX{15} ,SCRNY(15])

DIM MCODE(15) ,MX(15),MY(15) ,MDX(15),MDY(15)

RESET=7932:CLEAR=7951 :HIRES=7983 : CRUNCH=7737:
MISSILE=7993:TXTGEN=768

D$="":REM SET D$ TQ CTRL-D

PRINT DS$;"BLOAD MODULE."™

-0

0 b W

You might want to SAVE this program as INT/HEADER, to avoid having
to type it in agein the next time you start a gams.

The first thing to change is statement 5 so the header will Lload
the module we defined for our game.

Type 5 PRINT D$; "BLOAD MODULE.LUNAR LANDER".

Run the program. Integer Basic will give you a **¥*%¥ NO END ERR,
but don't worry about it. The header forces your program toc rsside at @
location in memory which is above the second hi-res page, so it won't get
wiped out by the graphics. It also sets up some important arrays in a way
that makes them available to the graphics module. Do not change any part of
the header; you will probably change the locations the array elements, which
will confuse the module. Statement 3 defines some labels; these are the
calls you can make to the module. The first routine, RESET, must be called
before you can use any of the other subroutines. It clears both hi-res
screens and initializes the module.

Try this now. Type CALL RESET in immediate mode. This has the
side effect of turning on the hi-res graphics, so type TEXT to get back.
Now you can play with your shapes. From Basic, shapes are controlled by
changing the entries of the arrays dimensioned in statements 1 and 2. Each
array has sixteen entries, one for each object. CODE{(0}, for example, is the
command code for object 0, the first object in the data base.

11

The arrays are the only way you can tell the graphics module what
you want, and the only way it can communicete with your program. There are
no PEEKS or POKES required. Here is what some of the arrays are for:

CODE{i} - tells the graphics module what to do with object i.

X(i] - tells the graphics module where to place object i on the hi-
res screen, horizontally.

Y(i] - tells the graphics module where to place object i, vertically.
SCALE{i) — tslls the graphics module how big object i should be.

XROT(i) -~ We won't use this just naw.

YROT({i) - Or this.

ZROT(i) - tells the graphics module how much object i should be
rotated around the 2z-axis.

SCRNX{i) - this entry is filled in by the module. It tells you
where an the screen the last point of object i fell, horizontally.

SCRNY[i) - same as SCRNX, only it's the vertical position of the
last point plotted for object fi.

These arrays provide a convenient place to put parameters for the
subroutines in the module. The subroutines get invoked by calls using the
labels defined in Statement 3. The following animation functions are pro-
vided:

RESET - initializes the module, clears the CODE array and clears
both hi-res screens.

CLEAR - clears both hi-res screens.
HIRES - turns on the hi-res graphics.

CRUNCH - creates a new frame of animation on one hi-res page,'
while displaying the other page.

MISSILE - adds missile—like objects to the animation.

TXTGEN - turns an a "built-in" hi-res character generator, so you
can put text into your animation.

12

The real workhorse of the command group is CRUNCH, which does all
the 3-D drawing. Before calling it, you should initialize the array entries
for each shape. To ses how CRUNCH works, let's draw in the background for
Lunar Lander. First, do these assignments (in immediate or deferred model:

>CODE{1])=1

>X([(1)=127

>Y(1)=191

>SCALE(1)=15

>XROT(1)=0

>YROT(1)=0

>ZROT(1)=0

Setting CODE to 1 is the usual way to introduce an object to the
screen. This code causes CRUNCH to transform the object first, and then to
draw it. It will not erase any old image of the object. This is exactly
what we want, since nothing has been drawn yet. In fact, erasing would not
only be wasted effort, but a mistake, since we are using the XOR drawing
method. (Remember that XOR toggles the bits to erase and to draw.)

The - position of the object is controlled by the X and Y array
entries and with the above assignments, the Lunar surface will be drawn
horizontally centered, and at the bottom of the screen. (More precisely, the
origin of the l(unar surface's coordinate system is centered, and at the
bottom of the scresn.)

The scale of the object is set to full size.

The rotation variables are set for a normal orientation {no rotat-
ianl.

There is no assignment to the SCRNX and SCRNY arrays. These are
filled in by CRUNCH.

Now the moanscape can be drawn. We call CRUNCH twice, in order
to draw it on both hi-res screens. This way, the object will not flicker
when the screens switch during animation. Perform the following calls:

>CALL HIRES Do this to get back to the hi-res mode.

>CALL CRUNCH Type carefully, since you can't see
what you're typing.

>CALL CRUNCH Nothing appears to happen; the screen
switch is quick.

13

>POKE -16299,0 Switch pages to make sure it's on both
screens.,

>POKE -16300,0 Back to page 1.

>CALL CRUNCH Just for fun, see how XOR drawing can
be weird?

>CALL CRUNCH Naoaw both screens are blank.

>CALL CRUNCH Draw the moon all over again.

>CALL CRUNCH Now both screens again contain the
drawing.

>TEXT

Now that our background is an the screen, we can forget about it;
this is the nice thing about XOR drawing. Set CODE(1)=0 to prevent CRUNCH
from drawing it any more. Let's introduce the LEM in exactly the same way
as we introduced the moonscape:

>CODE(0)=1

>X(0)=227 This will put the LEM on the right
side of the screen.

>Y(0)=48 This puts it near the top.

>SCALE(0)=15

>XROT(0)=0

>YROT(0)=0

>ZROT(0)=3 Tilt it a bit.

>CALL HIRES Turn on graphics again.

>CALL CRUNCH

>CALL CRUNCH

Now the LEM and the moon are on both hi-res pages. To animate
the LEM, we change its CODE entry to 2. Now each time CRUNCH is called it
will first erase the LEM's old image, transform it and then draw a new
image. If the code was Lleft squal to 1, the lander would either flicker
{from the toggling action of XOR}, or leave a trail of old images. Once we
introduce an object, normal animation requires that we do the following for
each frame:

1) ERASE THE OLD IMAGE OF THE OédECT

14

2) TRANSFORM THE OBJECT
3) DRAW THE NEW IMAGE

Set CODE{0)=2. Now you can call CRUNCH whenever you want with no
unwanted effects. JIry changing the X array sntry for the LEM and calling
CRUNCH. Do this a few times. You can't see any screen switching, and the
erasing/drawing is always done on the invisible hi-res page; thus, the ani-
mation is flicker free. One thing, though - the motion is much too slow
because each frame requires a lot of typing. It's time to write a program.

First type TEXT; then do all the initialization steps we did before,
but in deferred made:

10 CALL RESET

100 REM

110 REM DRAW IN THE LUNAR SURFACE
120 REM

130 CODE(1)=1

140 X(1)=127:Y(1)=191:SCALE(1)=15
150 XROT(1)=0:YROT(1)=0:ZROT(1)=0
160 CALL CRUNCH:CALL CRUNCH

170 CODE(1)=0

180 REM

190 REM INTRODUCE THE LEM

200 REM

210 CODE(D)=1

220 X(0)=227:Y(0)=28:SCALE{(0)=15
230 XROT(0)=0:YROT(0)=0:ZROT(D)=3
240 CALL CRUNCH:CALL CRUNCH

250 CODE(0)=2

260 REM

270 REM NOW THE LEM IS READY FOR ANIMATION
280 REM

There are a lot of things we could do at this point. To get the
LEM to move horizontally, and to wrap around the screen when it reaches the
edge, we could execute the following simple animation Lloop:

290 FOR I=227 TO 28 STEP -1

300 X(0}=I

310 CALL CRUNCH

320 NEXT 1

330 60TD 290:REM LOOP FOREVER -~ TYPE CTRL-C TO STOP

RUN the program. The important thing to notice is that the pro-—
gram puts the LEM at X-coordinates that guarantee it won't straddle ths edge
of the screen. By a straightforward analysis, it can be shown that no point
of the LEM will ever have an X-coordinate greater than 28 or Lless than -28.

15

Statement 290 witl give the LEM X-coordinates that keep it at least 28 plot
positions from the right or the left sides of the screen. This is a simple
but important concept.

We can put any number of assignments into this Lloop. Suppose we
want paddle #0 to control the approach angle of the LEM, Then we put this
statement into our animation Loop:

305 ZROT{0}=(PDL(0O)}/S} MOD 28
NOTE: ZROT must be in the renge 0-27.

Add this to your program and try it out. There is virtually no
limit to the things you can do, although the loop should be tight enough that
the animation will be fast. The final version of the Lunar Lander game is
just such an expansion of the basic animation loop developed above. It
contains statements that simulate the effects of lunar gravity and the LEM's
controls, and update X, Y, and ZROT to display those effects on the graphics
screen:

POKE 74,0:POKE 75,96:POKE 204,0:POKE 205,96

DIM CODE(15},X{15),Y(15),SCALE(15),XROT(15]),YROT(15),
ZROT(15) ,SCRANX(15) ,SCRNY (15)

DIM MCODE(15),MX[15},MY(15),MDX(15),MDY(15)

RESET=7932:CLEAR=7951 : HIRES=7983 : CRUNCH=7737 :
MISSILE=7993:TXTGEN=768

D$="":REM SET D$ TO CTRL-D

PRINT D$;"BLOAD MODULE.LUNAR LANDER”"

10 CALL RESET

20 GOSUB 1000:REM THIS SETS UP SOME TABLES

100 REM

110 REM SET UP THE SCREENS

120 REM

130 CODE(1])=1

140 X{1)=127:Y(1)=191:SCALE(1)=15

150 XROT(1)=0:YROT(1)=0:ZROT(1)=0

160 CALL CRUNCH:CALL CRUNCH

170 CODE({1)=0

180 REM

190 REM

200 CODE(D)=1

210 X(0)=227:Y(0)=28:SCALE(0)=15

220 XROT(0)=0:YROT(0)=0:ZROT(0}=3

230 CALL CRUNCH:CALL CRUNCH

240 CODE(0)=2

250 REM

260 REM INITIALIZE THE SIMULATION — SET UP AN INITIAL

2970 REM VELOCITY AND POSITION IN SOME IMAGINARY WORLD

280 REM

290 HSPEED=-20:VSPEED=0:HP0S=28184:VP0S=3584

300 REM

310 REM NOW READ THE CONTROLS (PADDLE #0 CONTROLS TILT,

320 REM WHILE SWITCH #0 TURNS ON THE ROCKET ENGINE)

wn -0

(3]

16

330 REM
340 TILT={PDL(0)/6] MOD 2B
350 IF PEEK(-16287)<128 THEN 460

360 REM

370 REM UPDATE THE VELOCITY VARIABLES
380 REM

380 HSPEED=HSPEED+HTHRUST(TILT)

480 IF HSPEED<-512 OR HSPEED>512 THEN HSPEED=HSPEED-HTHR

USTI(TILT)

410 VSPEED=VSPEED+VTHRUSTI(TILT)

420 IF VSPEED<-512 OR VSPEED>512 THEN VSPEED=VSPEED-VTHR
UST(TILT)

430 REM

440 REM SIMULATE THE EFFECTS OF GRAVITY

450 REM

460 VSPEED=VSPEED+10:REM A CONSTANT ACCELERATION
470 1IF VSPEED>512 THEN VSPEED=VSPEED-10

480 REM

4S80 REM UPDATE POSITION VARIABLES

500 REM

510 HPOS=HPOS+HSPEED:IF HP0S<3584 OR HP0S>29184 THEN

HPOS=HPOS-HSPEED

520 VPOS=VPOS+VSPEED:IF VP0S<3584 OR VP0S>20992 THEN

VPOS=VPOS-VSPEED

530 REM

540 REM UPDATE THE GRAPHICS ARRAY ENTRIES ACCORDINGLY
550 REM

560 ZROT(O)=TILT

570 X(0)=HPO0S/128:Y(0)=VP0S/128

580 REM

580 REM NOW DBAW THE NEW FRAME

600 REM

610 CALL CRUNCH

620 GOTO 340

1000
1010
1020
1030
1040
1050
1060
1070
1080
1080
1100
1110
1120

Enter

DIM VTHRUST(28) ,HTHRUST(28)

REM

REM SET UP SOME SIN/COS TABLES FOR EFFECTS OF
REM THRUST ON ROTATED LEM

REM

VTHRUST(0)=-30:VTHRUST (1)=-28:VTHRUST (2] =—-28
VTHRUST(3)=-26:VTHRUST(4)=-22:VTHRUST(5)=-16
VTHRUST(6)=-8:VTHRUST(7])=0

FOR I=0 TO 7:VTHRUST{14-I)}=-VTHRUST{I):NEXT I
FOR I=0 TO 14:VTHRUST(28-1}=VTHRUST(I}:NEXT I
FOR I=0 TO 28:HTHRUST({I+7] MOD 28)=VTHRUSTI(I]
NEXT 1

RETURN

this version and RUN it if you Llike. To stop the program,

you'll have to type CTRL—C. Type TEXT to turn off graphics; a POKE -16300,0
may be necessary if the program was interrupted while displaying the second-
ary hi-res page.

17

The game is really nothing more than an elementary simulation of a
lunar lander. There are of course many features missing; some of these
would make the game much more interesting. We could, for instance, have
several "moonscapes", and when the LEM hit a screen edge, the program would
scroll from one scene to another. A particularly nice feature is "auto-
zoom", where the LEM and a portion of the moon are automatically magnified
when landing (or crashing) is imminent. If we really wanted to get fancy, we
could expand the game by adding meteors, and other space vehicles {friendly
or otherwise). These and othsr special effects can be achieved either as
direct extensions of the techniques we have covered, or by clever tricks.
See Appendix B for a list of special effects and how to create them.

We won't develop this game any further, such extensions being
outside the scope of a tutarial. The important point is that you can extend
the game to include many more features with only a modest effort. Games
are much easier when the graphics are taken care of.

18

WRITING THE GAME PROGRAM_IN APPLESOFT

Here is the Applesoft header:

1 DIM CODEX(15),X%(15},Y%(15) ,SCALE%([15) ,XR0OT%(15]},
YROTX%({15) ,ZROT%(15),5X%(15),8Y%(15)

2 RESET%=7932:CLR%=7951:HIRES%=7983 :CRNCH%=7737:
TXTGENZ=768

3 D$=CHR$({4):REM SET D$ TO CTRL-D

4 PRINT D$;"BLOAD MODULE."

Type these statements in and SAVE them under the name FP/HEADER,
so you don't have to retype them when you start ancther game.

Before running the program, Applesoft's memory must be recon—
figured. This will keep the module and your Applesoft program from col-
liding. The following series of pokes will accomplish this:

1POKE 24576,0
JPOKE 103,1
1POKE 104,96
IPOKE 175,1
JPOKE 176,98

This unfortunately erases the program, so LOAD FP/HEADER [(if you
saved it earlier!]). Before you RUN it, change statement 4 so it will load in
the module we created for our game. Type 4 PRINT D$"BLOAD MODULE.LUNAR
LANDER". Now RUN the program. The header places itself and the interface
variables above the second hi-res page, so nothing will get wiped ocut by the
graphics. It also defines some arrays which interface your program to the
graphics module. Don't change any part of the header; you will probably
change the addresses of the array elements and confuse the module. State-
ment 2 defines some labels; these are the calls you can make to the module.
The first routine, RESET%, must be called before you can use any of the
other subroutines, It clears both hi-res screens and initializes the module.

Try this now. Type CALL RESET% in immediate mode. This has the
side effect of putting you into hi-res mode, so type TEXT to get back., Now
you can play with your shapes. From Basic, shapes are controlled by changing
the entries of the arrays dimensioned in Statement 1. Each array has
sixteen entries, one for each object. CODE%(0), for example, is the command
code for abject 0, the first object in the data base.

The arrays are the only way you can tell the graphics module what
you want, and the only way it can communicate with your program. There are
no PEEKS or POKES required. Here is what some of the arrays are for:

CODE% (i) - tells the graphics module what to do with object 1.

18

X%(i] - tells the graphics module where to place object i on the
hi-res screen, horizontally.

Y% (i) - tells where to place object i, vertically.

SCALE%{i) - tells the graphics module how big object i should be.
XROT%(i] — We won't use this just now.

YROT%(i] - Or this.

ZROT%(i} - tells the graphics module how much object i should be
rotated around the z-axis.

X% (i) - this entry is filled in by the module. It tells you whers
on the screen the last point of object i fell, horizontally.

SY%(i) - same as SX%, only it's the vertical position of the last
point plotted for object i.

These arrays provide a convenient place for parameters to the

subroutines in the module. The subroutines are called using the Llabels
defined in Statement 2. The following animation functions are provided:

drawing.
shape.
Lander.

RESET% - initializes the module, clears the CODE% array and clears
both hi-res screens.

CLR% - cltears both hi—-res screens.
HIRES% - turns on the hi-res graphics.

CRNCH% - creates a new frame of animation on one hi-res page,
while displaying the other page.

IXIGEN% - turns on a "built—in" hi-res character generator, so you
can put text into your animation.

The real workhorse of the group is CRNCH%, which does all the 3-D
Before calling it, you should initialize the array entries for each

To see how CRNCH% works, let's draw in the background for Lunar

First, do these assignments (in immediate mode):
JCODEZ(1)=1

1X%(11=127

1Y2{1)=191

1SCALEX%(1)=15

IXROT%(1)=0

1YROT%(1)=0

20

1ZROT%(1)=0

Setting CODE% to 1 is the usual way to introduce an object to the
screen., This code causes CRNCH% to transform the object first, and then to
draw it, It will not erase any old image of the object. This is exactly
what we want, since nothing has been drawn yet. In fact, erasing would not
only be wasted seffort, but a mistake, since we are using the XOR drawing
method. [Remember that XOR togglss the bits to erase and to draw.)

The position of the object is controlled by the X% and Y% array
entries and with the above assignments, the lunar surface will be drawn
horizontally centered, and at the bottom of the screen, (More precisely, ths
origin of the Llunar surface's coordinate system is centered, and at the
bottom of the screen.)

The scale of the cbject is set to full size.

The rotation variables are set for a normal orientation (no rotat—
ion).

There is no assignment to the SX% and SY% arrays., These ars
filled in by CRNCH%.

Now the moonscape can be drawn. We call CRNCH% twice, in order
to draw it on both hi-res screens. This way, the object will not flicker
when the screens switch during animation. Perform the following calls:

ICALL HIRESZ Do this to get back to the hi-res mode.

JCALL CRNCH% Type carefully, since you can't see
what you're typing.

ICALL CRNCHY Nothing appears to happen; the screen
switch is guick.

JPOKE -16299,0 Switch pages to make sure it's on both
screens,

JPOKE -16300,0 Back to page 1.

JCALL CRNCH% Just for fun, see how XOR drawing can
be weird?

JCALL CRNCH% Now both screens are blank.

JCALL CRNCH% Draw the moon all over again.

JCALL CRNCH% Now both screens again contain the
drawing.

ITEXT

21

Now that our background is on the screen, we can forget about it;
this is the nice thing sbout XOR drawing. Set CODE%(1)=0 to prevent CRNCHZ%
from drawing it any more. Let's introduce the LEM in exactly the same way
as we introduced the moonscape:

]CODEX (0] =1

1X%(0)=227 This will put the LEM on the right
side of the screen.

1Yz (0)=48 This puts it near the top.

1SCALE%(0)=15

1XROT%(0)=0

1YROTX(0)=0

1ZROT%(D)=3 Tilt it a bit.

1CALL HIRES%Z Turn on graphics again.

JCALL CRNCHZ

JCALL CRNCHZ

Now the LEM and the moon are on both hi-res pages. To animate
the LEM, we change its CODE% entry to 2. Now each time CRNCH% is called
it will first erase the LEM's old image, transform it and then draw a new
image. If the code was Lleft equal to 1, the lander would either flicker
(from the toggling action of XOR), or leave a trail of old images. Once we

introduce an object, normal animation requires that we do the following for
each frame:

1) ERASE THE OLD IMAGE OF THE OBJECT
2} TRANSFORM THE OBJECT
3) DRAW THE NEW IMAGE

Set CODE%(0)=2. Now you can call CRNCH% whensver you want with
no unwanted effects. Iry changing the X array entry for the LEM and calling
CRNCH%. Do this a few times. You can't see any screen switching, and the
erasing/drawing is always done on the invisible hi-res page; thus, the ani-
mation is flicker free. One thing, though ~ the motion is much tooc slow
because each frame requires a lot of typing. It's time to write a program.

First type TEXT; then do all the initialization steps we did before,
but in deferred mode:

10 CALL RESET%
100 REM

22

110 REM DRAW IN THE LUNAR SURFACE
120 REM

130 CODEX(1)=1

140 X%{1)=127:Y%2{1)=191:SCALEX(1)=15
150 XROT%{1)=0:YROT%(1)}=0:ZROT%(1])=0
160 CALL CRNCHX:CALL CRNCH%

170 CODEXZ(1)=0

180 REM

190 REM INTRODUCE THE LEM

200 REM

210 CODE%(0)=1

220 X%(0)=227:Y%(0)=28:SCALEX{0)=15
230 XROT%(0)=0:YROT%(0)=0:ZROT%(0}=3
240 CALL CRNCHZ:CALL CBNCHZ

250 CODEX(0)=2

260 REM

270 REM NOW THE LEM IS READY FOR ANIMATION
280 REM

There are a lot of things we could do at this point. To get the
LEM to move horizontally, and to wrap around the scresn when it reaches the
edge, we could execute the following simple animation Lloop:

290 FOR I=227 TO 2B STEP -1

300 X%(0)=1I

310 CALL CRNCH%

320 NEXT 1

330 6070 290:REM LOOP FOREVER - TYPE CTRL-C TO STOP

RUN the program. The important thing toc notice is that the pro-
gram puts the LEM at X-coordinates that guarantee it won't straddle the edge
of the screen. By a straightforward analysis, it can be shown that no point
of the LEM will ever have an X-coordinate greater than 28 or Lless than -28.
Statement 280 will give the LEM X-coordinates that keep it at least 28 plot
positions from the right or the Left sides of the screen. This is a simple
but important concept.

Ve can put any number of assignments into this loop. Suppose we
want paddle #0 to control the approach angle of the LEM. Then we put this
statement into our animation loop:

305 ZROTZ(0)=(PDL(0O)/8]
: NOTE: ZROT% must be in the range 0-27.

Add this to your program and try it out, There is virtually no
limit to the things you can do, although the Lloop should be tight enough that
the animation will be fast. The final version of the Lunar Lender game is
just such an expansion of the basic animation Lloop developed above. It
contains statements that simulate the effscts of Llumar gravity and the LEM's
contrals, and update X%, Y%, and ZROT% to display those effects on the
graphics screen:

23

1 DIM CODE%(1S),X%(15),Y%(15),SCALEX(15) ,XROT%(15],
YROT%(15) ,ZROT%(15),5X%(15) ,S5Y%(15)

2 RESET%=7932:CLR%=7951:HIRES%=7983 :CRNCHX=7737:
TXTGENZ=768

3 D$=CHRS$(4):REM SET D$ TO CTRL-D

4 PRINT D$;"BLOAD MODULE.LUNAR LANDER"

10 CALL RESETZ

20 G0SUB 1000:REM THIS SETS UP SOME TABLES

100 REM

110 REM SET UP THE SCREENS

120 REM

130 CODEX(1])=1

140 X%(1)=127:Y%(1)=191:SCALE%X(1])=15

150 XROT%(1)=0:YROTX(1]1=0:ZROTZ(1)=0

160 CALL CRNCH%:CALL CRNCHZ

170 CODEX(1)=0

180 REM

190 REM

200 CODE%(0)=1

210 X%(0)=227:Y%(0)=2B:SCALEX(0])=15

220 XROT%(0)=0:YROT%(0)=0:ZROT%(0])=3

230 CALL CRNCHZ:CALL CRNCHZ

240 CODE%(0)=2

250 REM

260 REM INITIALIZE THE SIMULATION - SET UP AN INITIAL

270 REM VELOCITY AND POSITION IN SOME IMAGINARY WORLD

280 REM

290 HSPEED%=-20:VSPEED%=0:HP%=29184:VP%=3584

300 REM

310 REM NOW READ THE CONTROLS (PADDLE #0 CONTROLS TILT,

320 REM WHILE SWITCH #0 TURNS THE ROCKET ENGINE ON)

330 REM

340 TILT%=PDLI(D)/9

350 IF PEEK(-16287]1<128 THEN 460

360 RENM

370 REM UPDATE THE VELOCITY VARIABLES

380 REM

390 HSPEED%=HSPEED%+HTHRUSTXZ(TILTZ]

400 IF HSPEED%<-512 OR HSPEEDX%>512 THEN

HSPEED%=HSPEED%-HTHRUSTZ(TILT%)
410 VSPEED%=VSPEED%+VTHRUSTX(TILTX)
420 IF VSPEED%<-512 OR VSPEED%>512 THEN
VSPEED%=VSPEED%~VTHRUSTX(TILTZ)

430 REM

440 REM SIMULATE THE EFFECTS OF SRAVITY

450 REM

460 VSPEED%=VSPEED%+10:REM A CONSTANT ACCELERATION

470 IF VSPEED%>512 THEN VSPEEDX=VSPEED%-10

480 REM

490 REM UPDATE POSITION VARIABLES

24

500 REM

510 HP%=HPZ+HSPEED%:1F HP%<3584 OR HP%>29184 THEN
HP%=HP%~HSPEEDZ

520 VPZ=VPZ+VSPEEDZ:IF VP%<3584 OR VPZ>20992 THEN
VP%=VP%-VSPEED%

530 REM

540 REM UPDATE THE GRAPHICS ARRAY ENTRIES ACCORDINGLY

550 REM

580 ZROTZ(0)=TILT%

570 XZ(0)l=HPX/128:Y%{0)=VP%/128

580 REM

580 REM NOW DRAW THE NEW FRAME

600 REM

610 CALL CRNCHZ

620 GOTO 340

1000 DIM VTHRUSTZ(28) ,HTHRUST%(28]}

1010 REM

1020 REM SET UP SOME SIN/COS TABLES FOR EFFECTS OF

1030 REM THRUST ON ROTATED LEM

1040 REM

1050 VTHRUSTZ(0)=-60:VTHRUST%(1)=-58:VTHRUST%(2])=-56

1060 VTHRUSTX(3)=-52:VTHRUSTX(4)=-44:VTHRUST%(5])=-32

1070 VTHRUST%Z(6)=-16:VTHRUST%(7]=0

1080 FOR I=0 TO 7:VTHRUSTX(14-I}=-VTHRUSTZ(I):NEXT I

1080 FOR I=0 TO 14:VTHRUSTX(28-1)=VTHRUSTX(I):NEXT I

1180 FOR I=0 TO 21:HTHRUSTZ(I+7)=VTHRUSTZ(I):NEXT I

1110 FOR I=22 TO 28:HTHRUSTX(I-22)=VTHRUSTZ(I):NEXT I

1120 RETURN

Type in this program and run it if you like. To stop the program,
you'tl have to type CTRL-C, and then do a TEXT command in immediate mode to
get the text screen back.

The game is really nothing more than an elementary simulation of a
lunar lander, There are of course many features missing; some of these
would make the game much more interesting. We could, for instance, have
several "moonscapes", and when the LEM hit a screen edge, the program would
scroll from one scene to another. A particularly nice feature is Mauto—
zoom", where the LEM and a portion of the moon are automatically magnified
when landing (or crashing} is imminent. If we really wanted to get fancy, we
could expand the game by adding meteors, and other space vehicles (friendly
or otherwise). These and other special effacts can be achieved either as
direct extensions of the techniques we have covered, or by clever tricks.
See Appendix B for a list of special effects and how to create them.

We won't develop this game any further, such extensions being
outside the scope of @ tutorial. The important point is that you can extend
the game to include many more features with only a modest effort. Games
are much easier when the graphics are taken care of.

25

SOME FUN_ WITH 3-D GRAPHICS

The 3-D world is a simple extension of the 2-D world, but it is
much more fun. While 2-D objects and transformations are easy to visualize,
things are much less intuitive in 3-D. Suddenly, instead of one kind of
rotation, thers are three kinds which can be combined to get some very
complex motions. Three dimensional objects also look much more realistic
than flat shapes. These are just some of the reasons why 3-D graphics are
so appesling.

The biggest problem with 3-D graphics is the difficulty of visual-
izing objects and describing them to the graphics editor. It's harder . to
draw 3-D objects on paper, and easy to get the different coordinates and
axes confused. If you thought 2-D coordinate systems were difficult to use,
you'll find 3-D coordinates even worse.

One way to represent complicated 3-D objects is to create several
different 2-D "views". This is the architect's approach: draw the object
from the side, from head on and from above. The Space Shuttle in Figure 4
is a good example:

Au
»
14 . .
Z.gﬁ
?
a3
3 2%
L + 4 " + ¥
N ~yg R A ° [TRT] 20 . ¢
- 5 iZ

4

-2 (]

N
118 ETEIETERCYE) ®\ 2 % ¢ k
- =14 - a2
<30 -l

30

4 2-daw

1]

-‘ll.

\

-
<

— . .
-" LT . IR Y “w g Al

Figure 4

26

We need all three drawings to eliminate the ambiguities present in
each drawing by itself, However, we can orient many objects so that a
single drawing will show where everything is. This drawing is tilted so that

there are no hidden points or Llines., The Box in Figure 5 illustrates this
technique:

Y-
(&,5,0) ;’5"0)
M4
s
: .3
(0,5,10) (S,K,DZ 41 ¢ 2
(00, P) (50,9
N —~ 5 -t 5 7 - 1 &t ¥ ¢ [3 4

“ T-Gvia

(00,10} i
2-0h (5,0,10)

Figure §

27

Another approach is to slice the object into Llayers. Usually, the
slicing is perpendicular to one of the axss, so that all of the points in a
slice have one coordinate in common. How convenient this method will be
depends on the object., For a certain class of shapes, this method is ideal;
consider the Prism in Figure 6:

A

(¥

yAm=

\ 4 1
slice #f1 slice #2
£ = 30 2z =50

'Dofnf‘s 0,1, 4 connected by lines to points 3,4,5 Ns,:er-frbe//-

Figure 6

These techniques are only suggestions. Often, very informal meth-
ods, relying heavily on trial and error, work best of all. Feel free to
experiment with the editor - that's the best way to learn. {The editor is
more than adequate for most conceivable game applications, but it is by no
means the last word. You may want to write your own custom editor to help
you with complex 3-D shapes. See Appendix C for some ideas.)

At this point we present the data base for the Space Shuttle. You
should make sure you understand where it came from (see Appendix Al.

Object 0 contains points 0-26, lines 0-28

Point 0 is at -60, O, DO Line O connects points 0 and 1
Point 1 is st -57, 3, 38 Line 1 connects points 0 and 2
Point 2 is at -57, 3, -3 Line 2 connects points 0 and 3
Point 3 is at -57, -3, 3 Line 3 connects points 0 and 4
Point 4 is at -57, -3, -3 Line 4 connects points 1 and &
Point 5 is at -42, 6, 9 Line 5 connects points 2 and B
Point 6 is at -42, 9, -6 Line B connects points 3 and 7

28

Point 7 is at -42, -6, 9 Line 7 connects points 4 and 8
Point B is at -42, -9, -6 Line 8 connects points 6 and 9
Point 9 is at -15, 8, -6 Line 9 connects points 8 and 10
Point 10 is at -15, -9, -6 Line 10 connects points 8 and 11
Point 11 is at 0, 15, -6 Line 11 connects points 10 and 12
Point 12 is at 0,-15, -6 Line 12 connects points 11 and 13
Point 13 is at 21, 36, -6 Line 13 connects points 12 and 14
Point 14 is at 21,-36, —6 Line 14 connects points 13 and 156
Point 15 is at 30, 36, -6 Line 15 connects points 14 and 16
Point 16 is at 30,-36, -6 Line 16 connects points 15 and 17
Point 17 is at 30, 8, -6 Line 17 connects points 16 and 18
Point 18 is at 30, -8, -6 Line 18 connects points 17 and 19
Point 18 is at 36, 9, -6 Line 19 connects points 18 and 20
Point 20 is at 36, -3, -6 Line 20 connects points 18 and 20
Point 21 is at 36, 6, 9 Line 21 connects points § and 21
Point 22 is at 36, -6, 9 Line 22 connects points 7 and 22
Point 23 is at 9, 0, 9 Line 23 connacts points 19 and 21
Point 24 is at 27, 0, 9 Line 24 connects points 20 and 22
Point 25 is at 21, 0, 27 Line 25 connects points 21 and 22
Point 26 is at 30, 0, 27 Line 26 connects points 23 and 25

Line 27 connects points 25 and 26
Line 28 connects points 26 and 24

You'll have to type this in to play with the space shuttle (it's not
available on the disk because of the copy protection}. Use the editor
exactly as you did before when you created the Lunar Lander shapes. When
you've finished, get into display mode (type 'S') and then into spin_mode
(type 'S' again). You should now see the Space Shuttle on the screen.

Spin mode is a special feature of the editor that can give you a
good idea of what an object wiltl look Llike as it rotates around the
different coordinate axes. In this mode the X, Y, and Z keys act Llike toggle
switches to control the spinning arcund the X, Y, and Z axes, respectively.
For instance if you hit the 'Z key, the Space Shuttle will begin to rotate
around the Z-axis of its coordinate system. Hitting it again will stop the
rotation. Try it,

Stop the Space Shuttle so that it is rotated a bit. Now hit the
'Y' key. The Shuttle will turn around the Y-gxis, but note that the Y-axis
has itself been rotated (normally it is straight—up—and-down). This is be-
cause of the way the 3-D package transforms objects. The first thing it
does is the rotation around the Z-axis; then it takes the rotated object and
rotates it some more, but this time around a transformed Y-axis. Finally, it
rotates again, around the X-axis. Many 3-D packages work in this way. This
allows you to rotate any object around its Z-axis in any orientation; you
should keep this in mind when you lay out your shapes.

Try this. Use the 'X' and 'Y' keys to get the Space Shuttle into
different orientations. Then, when you have stopped the rotation, hit the 'Z'
key. The Shuttle will spin around its transformed Z-axis.

This is definitely not the easiest concept to visualize. To make
things worse, you can have several (up to 3] distinct rotations going on at

29

the same time. Experiment with this. Some of the resulting effects are
interesting.

Coding this simple simulation in Basic would be very easy. Since
we are now in the 3-D world we would use the XROT (XROT%] and YROT
(YROT%) arrays, which were zeroed out in the 2-D Lunar Lander. Every
drawing technique carries over directly from the 2-D to the 3-D case.

Some final comments: The 3-D package has no perspective or hidden—
line capability, two features of the real world that humans use to under—
stand complex scenes. This means that many orientations of objects will
have two interpretations, as in an opticial illusion; this could make a game
confusing. Another Llimitation has to do with the limited number of paddles
on the average Apple II. It is difficult to create a 3-D game that allows
the player to control a space ship (or whatever] without some keyboard
commands. These are almost always hard to master. These comments are not
meant to discourage you, but rather to challenge you to create & first class
3—-dimensional game.

30

GAME_TOOL REFERENCE SECTION

This part of the manual contains all of the
information about each part of the Game Tool in
a spare and orderly manner and covers the parts
of the system that were not covered in the
tutorial. You should consult this section when
you have specific questions about some part of
the system. It will be assumed that you have
read at least a part of the tutgrial.

31

GAME TOOL EDITOR_COMMANDS

A/PPEND — Adds to the current graphics data base. There are
three modes of appending: P/0INT, L/INE, and O/BJECT. A data base
can have a maximum of 255 points, 255 lines, and 16 objects. Any
attempt to append to & part of the data base that is full will
result in an error message.

I/NSERT — Inserts into the data base. As with append there are
three modes: P/OINT, L/INE, and O/BJECT. When points are inserted,
some lines may bs changed so as to refer to their original points.
Inserting points or Llines never changes objects. Make sure to
change object descriptions when you insert points or Lines. Any
attempt to insert in part of the data base that is full will result
in an error message.

O/ELETE — Deletes from the data base. Again, there are three
modes: P/OINT, L/INE, and O/BJECT. When points are deleted, some
lines may change as in insert. Objects are never modified when
points or lines are deleted. Make sure to change object descript—
ions when deleting points or Llines.

C/HANGE —— Changes P/0INTS, L/INES, and O/BJECTS. Requires a range
which specifies how many to change. A single number "X" means
change only point, line or object X, a pair "X, Y' means change
points, lines or objects X through Y, and a_<cr> means change all
of the points, lines or objects in the data base. O0ld points, lines
or objects are displayed on the screen as prompts.

L/IST — Llists the current data base. A range is required as in
C/HANGE. The data base is listed starting with all of the objects,
followed by a range of points and Llines.

R/EAD — BLOAD's a previously defined data base from the disk into
the data base area. The standard Apple DOS (not copy—protected 3-—
D DOS) is used for the read.

W/RITE — BSAVE's the current data base to the disk. You are
prompted for a filename which is appended to the string "SHAPE."
to get the actual file name. Lunar Lander becomes SHAPE.LUNAR
LANDER in the disk catalog. The standard Apple DOS is used for
the write.

M/ESSAGE — Sends a message through the Apple II D0S. This is
useful for CATALOG'ing the disk while in the editor. Just type
'ICATALDS' when the flashing cursor appears. Any DOS command can
be entered, but the effects of LOAD's and SAVE's are unpredictable.

S/HOW — Displays the data base. This command is really three

different commands: P/0SITION, T/RANSFORM, and S/PIN. Each ane
prompts for an object number. Position will move the specified

32

object to a position on the graphics screen that corresponds to the
setting of the game paddles. Transform will perform all of the 3-D
transformations on the abject. In this mode, paddles 0 and 1
control X- and Y-axis rotation, respectively, the '2' key controls
rotation around the Z-axis, and the cursor keys control scaling.
Finally, spin will continuously rotate an object around any combin—
ation of axes. The 'X', 'Y' and 'Z' keys control rotation around the
X=-, Y- and Z-axis respectively.

<esc> — In any mode, escapes to a higher command level. If it is
the first character of an input Lline (where numbers are entered),
it also cancels the command and escapes to a higher command level.

For more information about Editor commands, see Appendix D.

33

EDITOR ERRCR MESSAGES

BAD POINT, REENTER — Points must have three coordinates, seper—

ated by two commas. Each coordinate must be in the range [-127 ...
1271.

BAD LINE, REENTER — The endpoints of a line must be currently
defined points,

BAD OBJECT, REENTER — The point and line ranges describing an
object must be within the range of currently defined points, tines
and objects.

BAD INDEX, TRY AGAIN — When specifying a point, line or object, an
index must be within the range of currently defined points, Llines
or objects.

BAD RANGE, TRY AGAIN -— When specifying a range of points, lines
or objects, the index or indices must be in the currently defined
ranges.

NOT A COMMAND, TRY AGAIN — You hit a key that didn't correspond
to any of the possible cammands.

NOT A GOOD MODE, REENTER —You have three choices: P/0INT, L/INE,
and O/BJECT modes. {Note: the I/NSERT command has no O/BJECT
mode.)

POINT SPACE FULL — The data base contains 255 points. No more
can be sntered. ’

LINE SPACE FULL — The data base contains 255 lines. It can't hold
any more.

OBJECT SPACE FULL — The data base contains 16 objects. That's
the limit.

CANNOT DELETE SOME POINTS — You are attempting to delete points
which are a part of some line descriptions.

34

THE _THREE DIMENSIONAL GRAPHICS SOFTWARE

The first part of the graphics package is the line erasing and
drawing program. There are two versions of this program; one draws by
0Ring the graphics memory with bitmasks, and erases by storing zeroes. This
makes the erasing function faster, since it is not necessary to read the
screen. The other version of the drawing software draws and erases by
XQRing the screen with the bitmask. The same subroutine is used for draw-—
ing and erasing. It is slightly slower than the OR version since it must
read memory to erase, but it has the corresponding advantage of leaving the
screen in its original state after each draw—erase cycle.

The drawing software works with a standard coordinate system and
does the mapping to the actual memory locations with the aid of tables. The
table scheme employed is the fastest possible but has the disadvantage that
not all of the hires screen is available. The effective screen size is
256x192, while the actual screen dimensions are 280x182.

Both versions of the drawing software work with both screens,
though only one screen will be active at any one time. Usually, the erasing
and drawing is done on the invisible screen; this is why you can never
actually see any lines being drawn during an animatian.

The second part of the package is the 3-D transformation program.
This program performs trus 3-D rotation and scaling of line drawings, though
in the interests of execution speed some limitations are imposed. The first
transform is rotation around the Z-axis. There are 28 possible orientations
around the Z-axis - plenty for game applications. The next transform is
rotation around the Y-axis; it is applied to the result of the previous
transform. Again there are 28 differsnt orientations around this axis. The
last rotation is around the X-axis; this is applied to the resutt of the
previous rotations. There are 28 different orientations around the X-axis.

After carrying out the requested rotations, the program performs a
scaling transformation. There are 16 possible sizes for an objsct ranging
from full scale to 1/16 scale, in increments of 1/16. This should be ade-
quate for game applications.

The final transformation is positioning, The transformed points are
given an absolute offset of 0-255 horizontally, and 0-181 vertically. The 0,0
point is the left top corner of the screen.

It is important to realize that this program does not clip Llines
that are partially or entirely off the screen. In fact, it cannot even
detect those lines, and this sometimes gives unwanted results. It is necess-—
ary for the application program to give objects absolute positions that keep
them suitably far from the screen boundaries., A similar though subtler
problem is that when rotated, points can go off the screen if they are far
enough from the origin. If possible, points should be defined to be close
enough to the origin that they don't fall off the screen in any possible
orientation.

35

HIGH LEVEL INTERFACE FOR _BASIC PROGRAMS

The high level interface concept is simple — transfer arguments to
and from the 3-D package through fixed locations set up as Basic arrays.
The arrays must be defined at the beginning of the program, but this is not
a serious loss of flexibility at all. The arrays provide the following
interface:

CODE (CODE%) — An array of 16 integers (numbered 0 to 15} which
specifies the graphics operations that are to be performed for each
of up to 16 objects. The numbering of objects in the editor
corresponds to the numbering of the CODE array. An element of
this array may take on the following values:

~— do nothing with the object.

— transform the object and draw it,

-— erase the objsct, transform it and redraw it.
— @grase the object.

W -0

CODE entries for non-existent objects must be 0. This is
done for you when a module is initialized.

X {X%) — An array of 16 integers which specifies the horizontal
offset, in pixel positions, of each object. An offset of 0 puts the
origin of an object's coordinate system exactly on the left screen
boundary, while an offset of 255 puts the object an the right
screen boundary.

Y (Y¥) — An array of 16 integers which specifies the vertical
offset, in pixel positions, of each object. An offset of 0 puts the
origin of an object's coordinate system right on the top screen
boundary, while an offset of 191 puts the object on the bottom
screen boundary.

SCALE (SCALE%) — An array of 16 integers which specifies how big
each of the objects should be drawn. Array values can range from
0 (1/16th normal sizel to 15 (normal sizel. Any other value has
the sffect of turning off the scaling transformation. This can be
useful when speed is critical and no scaling is required.

XROT (XROT%) — An array of 16 integers which specifies how much
each of the objects should be rotated around the X-axis of its
coordinate system. Array values can range from O (no rotation} to
27 (rotated almost 360 degrees). Any other value has the effect
of turning off the X-rotation transformation. This is useful when
speed is critical.

YROT (YROT%) — An array of 16 integers which specifies how much

each of the objects should be rotated around the Y-axis aof its
coordinate system. Array values can range from 0 (no rotation) to

36

27 (rotated almost 360 degrees). Any other value has the effect
of turning off the Y-rotation transformation. This is useful when
speed is critical.

ZROT (ZROT%) — An array of 16 integers which specifies how much
each of the objects should be rotated around the Z-axis of its
coordinate system. Array values can range from 0 (no rotation) to
27 (rotated almost 360 degrees). Any other vaslue has the effect
of turning off the Z-rotation transformation. This is useful when
speed is critical.

SCRNX (8X%) — An array of 16 integers which are filled in by the
transformation program. Each entry holds the horizontal position
of an object's last point (as numbered in the data base} on the
screen. Values returned range from 0 to 255. This is useful for
determining when two separate objects touch.

SCRNY (SY%) — An array of 16 integers which are filled in by the
transformation program. Easch entry holds the vertical position of
an object's last point (as numbered in the data base] on the
screen. Values returned range from 0O to 191, This is useful for
determining when two separate abjects touch,

The set of graphics operations available to the application is very
specialized, though for game development it should be adequate. Three dimen—
sional line drawing is well supported, with the following functions:

RESET (RESET%) — Initializes the graphics module by zeroing out
the CODE arrsy and setting up eddresses in some self-modifying
code, The screen is then cleared and hi-res graphics mode [(primary
page) turned on.

CLEAR (CLR%) -— Clears both hi-res graphics screens and turns on
hi-res graphics {primary page).

HIRES (HIRES%) -—— Turns on hi-res graphics (primary page).

CRUNCH (CRNCH%) — Creates a new frame of animation on the
invisible hi-res screen, The graphics operations performed depend
on the CODE entries for each of the existing graphics objects.
When the new frame is complete, CRUNCH flips the display to that
hi-res page. In Applesoft, CRNCH% must alsoc Llocate the arrays,
since they are not absolutely fixed in memory. This must happen on
every call of CRNCH% since locations can change at run—time.

The Game Tool provides some very special purpose features that
should be very useful in games. The most unusual facility is the missile
generator. Missiles are simply plotted points, with speed and dirsction
attributes, This allows the user to fire missiles without having to worry
about whers they should be plotted and when they have gone off the screen.
Because of the added overhead in the CRNCH% routine, Applesoft users cannot
use missiles. In Integer Basic the missile interface is similar to the 3-D

37

graphics interface. The following arrays provide for transfer of arguments:

MCODE -— An array of 16 integers which specifies what operations
are to be performed on each of 16 missiles. The following array
sntries are defined:

0 — [(inactive) do nothing with the missile.

1 — {active) animate missile and wrap at screen bound-
aries,

2 — (unassigned)

3 — {active) animate missile and clip at screen bound-
aries,

The MCODE array entries are written into by the
missile utility as well as read from. In clip
mode, when a missile goes off an edge of the
screen, its MCODE entry is set to 0. This is
quite simple to test for. Putting undefined val—
ues inte the array entries has undefined eff-
ects. Before using the missile utility, it is
necessary to zero out the MCODE array. RESET
does not do this for you.

MX — An array of 16 integers which specifies the horizontal
position of each of 16 missiles. The entries may range from O
(left screen edge) to 255 (right screen edgel. The array entry is
given the missile's starting position at the time of activation, but
the missile utility maintains it from then on.

MY -— An array of 18 integers which specifies the vertical position
of each of 16 missiles. The entries may range from 0 (top screen
edge) to 191 (bottom screen edge). The array entry is given the
missile's starting position at the time of activation, but the
missile utility maintains it from then on.

MDX - An array of 16 integers which specifies the horizontal
component of the missile's velocity. This amount is added to MX
every time the missile utility is called. Array entries may have
any value in the range =127 ... 127. Suggested values lie in the
range =7 .. 7.

MDY -~ An array of 16 integers which specifies the vertical com-
ponent of the missile's velocity. This amount is added to MY every
time the missile utility is called. Array entries may have any
value in the range =127 ... 127. Suggested values lie in the range
7 e 7.

One utility handles all the missile functions:
MISSILE — This subroutine attempts to update the MX and MY arrays
by the values in the MDX and MDY arrays, respectively, for every

currently active missile. MCODE entries are checked to determine
if a missile should wrap or be clipped when a screen boundary is

38

encountered. If a missile is clipped, its MCODE entry is set back
to zero. During normal animation, MCODE entries will be 128 more
than the value originally stored thers by the user.

The Game Tool has full hi-res text capability:

TXTGEN — Turns on text. Any subsequent print statement will send
text onto the hires screen. The character set sits on the primary
text page (1024 to 2047) and will be destroyed if any printing is
done between the time that the module is Lloaded and TXTGEN is
called. The character set provides upper and lower case, as well
as special game symbols. (Thanks to Christopher Espinosa for the
text generator and character set).

For more information about the text generator, see the notes in
Appendix E. For a sample program using MISSILE and TXTGEN, see Appendix F.

39

HIGH LEVEL INTERFACE FOR ASSEMBLY LANGUAGE PROGRAMS

AllL of the functions available to the Integer Basic programmer are
also available to the assembly language programmer. The interface is quite
similar too. However, the arrays are more compact since there is flexibility
at this level to define byte arrays. (This section will describe how to set
up the assembly language interface, Consult the previcus section for the
behavior aof the graphics functions.) Here are the array descriptions for
this Llevel:

CODE — 16 consecutive bytes starting at address $6000, containing
the command bytes for up to 16 objects. The following commands
are defined:

$00 — do nothing with the object.
$01 — transform the object and draw it.
$02 — erase the object, transform it and redraw it.
$03 — erase the object.
X — 16 consecutive bytes starting at address $6010 containing the

horizontal positions of the objects. Possible array values range
from $00 to S$FF,

Y — 16 consecutive bytes starting at address $6020 containing the
vertical positions of the objects. Possible array values range from
$00 to S$BF.

SCALE — 16 consecutive bytes starting at address $6030 containing
the sizes of the objects. Possible array values range from $00 to
$0F.

XROT — 16 consecutive bytes starting at address $6040 containing

the orientations of the objects around the X-axis. Possible array
values range from $00 to $1B.

YROT — 16 consecutive bytes starting at address $6050 containing
the orientations of the objects around the Y—axis. Possible array
values range from $00 to $1B.

ZROT — 16 consecutive bytes starting at address $6060 containing
the orientations of the objects around the Z-axis. Possible array
values range from $00 to $1B.

SCRNX — 16 consecutive bytes starting at address $6070 which the
3-D transformation program fills in with the absolute horizontal
screen position of the last point transformed for each object.

SCRNY — 16 consecutive bytes starting at address $6080 which the

3-D transformation program fills in with the absolute vertical
screen position of the last point transformed for each abject.

40

MCODE — 16 consecutive hytes starting at address $6090 which
specify which operations to perform for each missile. Possible
array entries are:

$00 — (inactive) do nothing with the missile.

$01 — (active) animate the missile, wrap at screen bound-
aries.

$02 — (unassigned)

$03 — (active] animate the missile, clip at screen bound-
aries.

During normal animation, the array entries will
change from $01 to $81 and from $03 to $83.

MX — 16 consecutive bytes starting at address $60A0 which specify
the horizontal position of each missile. Array entries may range
from $00 to S$FF.

MY — 16 consecutive bytes starting at address $60BO which specify
the vertical position of each missile. Array entries may range
from $C0 to $BF.

MDX -— 16 consecutive bytes starting at address $60C0 which spec—
ify the horizontal component of each missile's velocity. Array
entries may range from $00 to $FF though suggested values Llie in
the range $F9 ... 0 ... $07.

MDY — 16 consecutive bytss starting at address $60D0 which spec—
ify the vertical component of each missile’'s velocity. Array en-
tries may range from $00 to $FF though suggested values lie in the
range $F9 ... 0 ... $07.

The grephics operations have the following asddresses:

RESET — ($1EFC)
CLEAR — ($1FOF)
HIRES — ($1F2F)
CRUNCH — ($1E39]
MISSILE — ($1F39)
TXTGEN - ($300)

The following source might serve as a header for assembly Llanguage
application programs:

ORG $6000
;7 Set up the arrays
;
CODE DS $10 ; Sat aside 16 bytes
X 0s $10
Y DS $10
SCALE DS $10

41

XROT DS $10

YROT DS $10
ZROT DS $10
SCRNX DS $10
SCRNY DS $10
MCODE DS $10
MX DS $10
MY DS $10
MDX Ds $10

MDY DS $10

!
; Define subroutines in the graphics package

)
RESET EQU $1EFC

CLEAR EQU $1FOF
HIRES EQU $1F2F
CRUNCH EQU $1E38
MISSILE EGU $1F39

TXTGEN EQU $300

; Your program follows at address $60ED
Writing an application program in assembly language will be very

much like writing one in Basic. The final result, however, will be a faster
program.

42

Appendix A _— The Cartesian Coordinate System

To talk about Llocations in 2 and 3 dimensional "spaces" without
pointing, we need some scheme that is both easy to use and unambiguous. The
latter condition is vital if we are conversing with & computer. If two
locations are different, they must have e different description or there will
be confusion. The Cartesian Coardinate System is a scheme for talking about
locations that is both sasy to use and unambiguous.

Here is how it works in 2 dimensions. First superimpose two

scales over your drawing as in Figure A1. The horizontal scale is called the
X-axis and the vertical scale is called ths Y-axis.

>|(

“f1 o -9 ~§ -7 46 % -4 -3

Figure A1

43

Now, to talk about a point P, draw a rectangle with one corner at
the junction of the two axes, and the opposite corner at the point P as in
Figure A2. The measure of a horizontal side of the rectangle is the X-
coordinate of P, while the measure of a vertical side is the Y-coordinate.
The description of P is its X-coordinate and its Y-coordinate. For sxample,
in Figure A2, the X-coordinate of P is -10, while its Y-coordinate is 3. Its
description is thus (-10, 3). There is no simpler scheme.

Figure A2

44

With a few additions it works just as well in a 3-D world. We
need another scale, called the Z-axis, and for each point P, instead of
drawing in a rectangle, we draw in a rectangular solid as in Figure A3. The
X-coordinate is the measure of a side parallel to the X-axis, the Y-
coordinate is the measure of a side parallel to the Y-axis, and the Z-
coordinate is the measure of a side parallel to the Z-axis. Putting thess
three coordinates together gives the description of point P, which in Figure
A3 is (-10, 3, 20).

Ak

£
-
o

Figure A3

Drawing in the rectangle or solid is really just an explanatory
device. Once you get used to coordinates, you will perform the whole
process in your head. (Or, after reading this, you may want to write your
own editor which interfaces to a graphics tablet or Llight pen. See Appendix
C.]

45

Appendix B _— Specia ffects with the Game Tool

The Game Tool was designed to be used in certain standard ways.
You do have considersble control over the drawing software, nevertheless,
which allows all kinds of special effects. Here is a collection of tricks
and hints which will help you to go beyond what was covered in the tutorial.

Flickering Flames

Most outer—-space games seem to require a rocket thrust cone. If
you draw this just Like any other object, though, it doesn't look Like a
flame. One solution is to drew the thrust cone on every other frame of the
animation. To implement this, make sure to introduce the cone—-shape on only
one of the hi-res pages, and during the animation set the CODE of the cone
to 0 every other time through the loop. To pull this off requires close
attention to which screen is which.

Orbiting

Sometimes an object must be moved in a circular or eliptical path.
This can be implemented by using a table or actually computing the path, but
there is an easier way. First you must create a dummy object that consists
of but one point. Pick a point that is far away from the origin, but not so
far that it will go off the screen when it's rotated. (A point like (sg, O,
0) is a good choice. Suppose we defined point 11 in that way. Then we
would enter the following object using the editor:

0:11,11, 1, 0

This tells the editor that the object has only a single point, and no lines
at all. Now when we rotate this object around the z-axis, we will find that
its SCRNX and SCRNY array entries contain the X— and Y-coordinates of a
circular orbit. To make any other object follow this path, we simply take
the SCRNX and SCRNY values for our "point—object" and put them in the X and
Y entries for the other object. To get elliptical orbits, simply rotate
around the X— or Y-axis. Experiment to get it right,

Dynamic Objects

Some games require objects to change their shape. Scaling is often
all that is required, but what do you do when an object must change its
actual form while your program is running? It is possible to change the
data base M"on the fly", and while this is tricky, it will allow you to
achieve all kinds of special effects. Changing the data base is the best way
to implement explosions where the object comes apart, laser beams and
anything else that requires an object to change radically.

The data you want to get at is in the graphics data base; the

memory map of this part of the module is described in Appendix C. From
Basic, you can use POKES to change things; assembly language programmers can

486

modify the data by storing new values on top of the old onses. Once you
change data base, it stays changed. If you'll need an object Llater, copy
its description to a safe place before you change it.

Solid 2~D Objects

The Game Tool 1is limited to vector graphics, but that shouldn't
keep you from putting other kinds of graphice on the scresn. All you have
" to do is figure out how to draw your shape using only lines. For example,
it takes about 15 small lines to draw one of the Space Invader creatures
from that popular Apple II and arcade game. These lines overlap a lot, so
you almost have to be OR-—drawing your graphics to execute this technique.

47

Appendix C — Writing Your Own Editor

You can think of the editar as & funny game that is missing its
simulation part. It uses a module to do its graphics, just like any program
you write. The editor module contains OR-drawing graphics, and the assembly
language interface. This means that you can write a program in Basic or
assembly lenguage that does everything the Game Tool Editor does, snd more.
If you are creating a lot of complicated shapes, it might be a good idea to
first write a custom editor that will make the whole thing easier. What
follows are some hints on how to write your editor.

Any editor must be able to create and modify data bases in their
standard form, as the 3-D graphics software won't accept anything else. A
standard data base has the following memory map:

$7FD (2045)
Contains the number of objects in the data base.
$7FE (2046)
Contains the number of points in the data base.
$7FF {2047)
Contains the number of lines in the data hase.
$800 (2048)
to $8BFF (2303}
The X-coordinates for all of the points, in B-bit
2's compliment forn.
$800 (2304)
to $9FF {2559)
The Y-coordinates for all of the points, in 8-bit
2's compliment form.
$A0D (2560)
to S$AFF (2815])
The Z-coordinates for all of the points, in 8-bit
2's compliment form.
$B800 (2816)
to $BFF (3071}
The first endpoints for all of the Llines, in B-
bit unsigned form.
$CO00 (3072)
to $CFF (3327)
The second endpoints for all of the Llines, in 8-
bit unsigned form.
$D00 (3328)
to $DOF (3343}

The index of the lowest paint for all of the
objects, in 8-bit unsigned form.

48

$D10
to $D1F

$D20
to $D2F

$D30
$D3F

(3344)
(3358)

(3360)

(3375)

{33786)
{(3391)

The index of the highest point PLUS 1, for all
of the objects, in B-bit unsigned form,

The index of the lowest Lline for all of the
objects, in B-bit unsigned form.

The index of the highest Lline PLUS 1, for all of
the objects, in 8-bit unsigned form.

It is important to note that there are some dependencies betwseen

the different arrays.
change those arrays,

Objects are made up of points and lines, so if you
you may get some invalid objects. Similarly, changing

the point array may make some Lines invalid. Your editor should do some—
thing sensible in these situations.

49

Appendix D — GBGame Tool Editor Notes

The Game Tool Editor has been upgraded to work with both Dos 3.2
‘and Dos 3.3 systems. When the 3-D disk is booted, it will determine which
kind of system it is in and select the corresponding Dos. The user may
change versions at any time in the Editor command mode by pressing the '2'
key for Dos 3.2 or the '3' key for Dos 3.3 (this will also be the version
used by the 3-D Graphics Module Maker). The version of Dos currently in use
will be displayed in the top center of the Editor title page:

3/D GRAPHICS EDITOR (3.3) JuLY 27, 1980

The Editor 'M' command can be very useful for controlling your
Apple from 3-D Graphics. For example, users with a second drive may select
it as the 'data' drive for loading and saving shapes by typing 'M' and typing
the command 'CATALOG,D2'. ALl subequent reads and writes will be done with
the second drive (the systam will still use the first drive for accessing the
Game Tool disk}). The 'M' command can salso be used to delete and rename
files on the data disk.

If the computer has a printer or other output device, it may be
turned on from the Editor by typing 'M' and 'PR#n', where n is the slot
number of the device. To turn off the device, type 'M' and 'PR#0'. For
example, to list the database to a printer in slot 1, type the following:

MPR#M <cr> (turn on the printer)
ML<cr> (list the database)
MPR#0<cr> (turn off the printer]

. Some printers can dump the Apple's hires graphics screen after a
shape has been displayed on it — to do this with Apple's Silentype printer,
type the following commands:

MPR# <cr> {turn on the printer)
M<CTRL—><cr> {control-G dumps the first hires screen)
MPR#0<cr> {turn of f the printer)

Users who are interssted in writing their own editors may need to
know where shapes and modules are stored in memory. The shape database is
described in Appendix C and occupies hex locations $7FD to $D3F. The module
consists of this data and the 3-D software, and occupies $7FD to S$1FFF,
When BSAVEing shapes and modules, use the following ranges:

BSAVE SHAPE.NAME ,A$7FD ,L$543
BSAVE MODULE.NAME ,A$7FD ,L$1803

To convert a module back into a shape, one may type the following
in immediate mode in Basic:
BLOAD MODULE.NAME
BSAVE SHAPE.NAME ,A$7FD ,L$543

50

Appendix E - Notes on the TXTGEN Hires Text Utility

The text generator allows the user to place text on the hires
graphics screens along with 3-D Graphics shapes. To use it, the user must
specify text when creating the module, When such a module is saved to or
loaded from disk, the text scresn will fill with strange cheracters — this is
the TXTGEN character table, which contains the shapes of the text char-
acters. A program which is going to use the téext generator must not erase
or print on the text screen. Otherwise the character table will be damaged
or destroyed, and the text characters will not print correctly.

The Basic or assembly Llanguage program shouid call the TXTGEN
routine before any printing is done. Then, any characters printed will be
sent to the hires graphics pages instead of the text screen. The horizontal
and vertical tab functions of Integer Basic and Applesoft will work as usual,
but the screen will not scroll. To clear the screen, call CLEAR (CLR%) - do
not use HOME or CALL -936, as these will damage the character table. See
Appendix F for an Integer Basic program using TXTGEN.

The text gsnerator can print upper and lower case characters as
well as special graphics symbols. A 'shift' facility is available to allow
easy access to characters that aren't available on the Apple keyboard — the
following control characters, if printed as part of a string, will shift any
subsequent letters as shown (spaces and punctuation are not affected):

CHARACTER CHRS FUNCTION - ASCII RANGE
CTRL-@ CHR$(0) Shift to upper case 64 to 95
CTRL-A CHR$(1) Shift to lower case g6 to 127
CTRL-B CHR$(2) Shift to graphics symbols 0 to 31
CTRL-C CHR$(3) Shift to digits/punctuation 32 to 63

The only other contral character .recognized by TXTGEN is the carriage return
character (ascii 13). ALl other control codes will print as graphics symbols.

To use the text generator from an assembly Llanguage program, first
activate it with a JSR TXTGEN (or JSR $300 from the mini-assembler]). To
print a character, the program shoutd place its ascii code in the A register
and call the Monitor routine COUT (JSR S$FDED). The character will be printed
on the screen at the current 'cursor' location. The only register affected
is the A register - it 1is ANDed with $7F to remove bit 7 from the
character.

Other monitor routines which call COUT may also be used. To position
the cursor, store the column number in $24 and the row number in $25. To
clear the screen, use JSR CLEAR (JSR $1FOF). For printing long strings of
text, the user may wish to create a subroutine that calls COUT repeatedly
for each character in the string until a terminator {such as $00) is reached.
For those wishing to experiment with changing the character table, it is
located between $400 and $7F7 in memory — the TXTGEN program itself is at
$300 to $3BF.

51

Appendix F — A Sample Progrem Using 3-D Graphics, Missiles and Text

The following program should help to illustrate the use of missiles and
TXTGEN. Before attempting to run this program, you should first create 8
module with the missite and text utilities in place. Use the module maker
and the Space Shuttle shape data file and specify OR drawing. Now you can
run the following program:

0 POKE 74,0: POKE 75,96: POKE 204,0: POKE 205,96

1 DIM CODEHS} ,X(15}) Y[15l SCALE[15] ,XROT(15], YHDT[15]
ZROT(15) SBHNX[‘IE] SGHNYHS}

2 DIM MCODE([15),MX(15) MY[15],II)X[15] MDY(15)

3 RESET=7832: CI£AB=7951 HIRES=7983:. CHUNGH=7737. 5
MISSILE=7993: TXTGEN=768 '

4 D$="": REX D$=CTRL-D

5 PRINT D$;"BLOAD !IJDULE.SPACE SHUTI'LE"

7 POKE 851,209: POKE 862,209: REM= Fix- over-r"lta

0 CALL RESET -

20 CALL TXTGEN : REM Turn on the text generator

40 VTAB 2: PRINT "THE SPACE SHUTTLE"

50 COUNT=0 : REM Initialize the animation fra-e counter

60 REM

100 CODE(0)=1

110 X(0)=127:Y(0)=96

120 SCALE(0}=15: XROT(0)=2: YROT(0)=5: ZROT(0)=0

130 CALL CRUNCH

140 CALL CRUNCH

150 CODE(D}=2

160 REM So far, nothing new

170 FOR I=0 TO 15: MCODE(I)=0: REXT I: REM Zero the MCODE array

180 REM Now introduce 4 missilss

190 MCODE{D)=1: MCODE{1)=1: MCODE(2)=1: MCODE(3)=1: REM Wrap missiles!

200 REM Set up positions and speeds

210 FOR I=0 TO 3: MX(I)=127: MY(I)=96: NEXT I

220 MDX([0)=6: MDX(1)=0: MDX[2}=-6: MDX(3)=0

230 MDY{D)=0: MDY{1)=6: MDY(2])=0: MDY(3}=6

240 REM Start the main animation loop

250 ZROT(0)={ZROT(01+1) MOD 28

260 CALL CRUNCH

270 CALL MISSILE

280 REM Now print the frame number in the upper right corner

290 VTAB 2: TAB 30: PRINT ™ ":REM Erase the old count

295 COUNT={COUNT+1) MOD 10000

300 VTAB 2: TAB 30: PRINT COUNT

310 6070 250

-

52

S '

* * ATTENTION PROGRAMMERS * *
WE PAY EXCELLENT ROYALTIES . oLt

WE HAVE WIDE DISTRIBUTION! ;,Jrl:
: =7
If you have good software, we can: do the best job
of getting it to the marketplace. Our.reputation for
only quality offerings is unsurpassed.™ - Customer: accept-
ance of Top of the Orchard Software is overwhelming.
Innovative gaming and well-developed applications
and utilities are our interest. Put your softwage in
the hands of professiocnals and- reap the rewards,:
Contact us today. : ~
Californla Pac1flc Computer Co.
1623 Fifth Street, Suite B .
Davis, CA 95616 : g

